Click on the links for resources on each topic.

2010-N-2:

- Crystal Structures

2010-N-3:

- Coordination Chemistry

2010-N-4:

- Weak Acids and Bases
- Calculations Involving pKa

2010-N-5:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams

2010-N-6:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams
- Weak Acids and Bases
- Calculations Involving $\mathrm{p} K_{\mathrm{a}}$

2010-N-7:

- Alkenes
- Alcohols
- Organic Halogen Compounds

2010-N-8:

- Structural Determination

2010-N-9:

- Organic Mechanisms and Molecular Orbitals
- Stereochemistry

2010-N-10:

- Aldehydes and Ketones
- Carboxylic Acids and Derivatives
- Synthetic Strategies
- Organic Mechanisms and Molecular Orbitals

2010-N-11:

- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2010-N-12:

- Aromatic Compounds
and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)
 SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2010
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		NUMBER	
NAMES		TABLE	

OFFICIAL USE ONLY

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 14 and 22 are for rough working only.

Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
11	9			
12	7			
13	8			
15	4			
16	6			
17	10			
18	8			
20	7			
21	6			
23	5			
Total	70			
Check Total				

- SrFeO_{3} crystallises with the perovskite structure, shown below. The structure is cubic with iron atoms on each corner, oxygen atoms at the centre of each face and a strontium atom at the centre of the cube. Mixed metal oxides such as this are of current research interest because of their magnetic and possible superconducting properties.

Show the structure is consistent with the formula SrFeO_{3} and give the coordination numbers of the Sr, Fe and O atoms.

Using the box notation to represent atomic orbitals, work out how many unpaired electrons are present on the iron cation in this compound.

It is possible to substitute the Sr^{2+} ions at the centre of the unit cell by La^{3+} ions to make a series of compounds with the formula $\mathrm{La}_{1-x} \mathrm{Sr}_{x} \mathrm{FeO}_{3}$ with $0 \leq x \leq 1$. Suggest why this substitution is achieved without significant change to the unit cell dimensions and describe how charge balance is achieved in these compounds.

- The species $\left[\mathrm{Cr}(\mathrm{en})_{3}\right]\left[\mathrm{FeCl}_{4}\right]_{3}$ is an example of a salt in which both the anion and cation are comprised of coordination complexes. Name the complex using standard

Draw the structure of the cation. Is this complex chiral? Briefly explain your reasoning.

If the salt is dissolved in water and a saturated solution of KCl is added to the solution, different coloured complexes can be crystallised from the solution. Write the formulae for two of these complexes.

- Aqua ligands in coordination complexes are generally acidic. Briefly explain this phenomenon using $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}$ as an example.
\square
Solution A consists of a 0.10 M aqueous solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A. The $\mathrm{p} K_{\mathrm{a}}$ of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}=5.69$.

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 28.5 g of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)_{2}$ dissolved in water. Calculate the pH of Solution B.
\square
Using both Solutions A and B, calculate the volumes (in mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=7.00$.

- The diagram below shows part of the phase diagram of water.

The average pressure on the surface of Mars is around 0.6 kPa . If the night time temperature is $-60^{\circ} \mathrm{C}$ and a summer day temperature is $20^{\circ} \mathrm{C}$, describe what happens to any water on the surface of Mars as the sun rises.

The highest surface pressure on Mars is thought to occur at the Hellas Basin, a lowlying area created by the impact of a large asteroid. If the pressure in this region is 1.2 kPa , use the phase diagram to estimate the temperature range in which liquid water will occur. Show your working on the phase diagram.

- The critical point of $\mathrm{H}_{2} \mathrm{O}$ is over $250^{\circ} \mathrm{C}$ higher than for $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$. Describe, at the molecular level, what needs to happen to the interactions between the water molecules to reach the critical point and why this requires a higher temperature in water than in the other group 16 hydrides.
- A dilute solution of ammonia has a pH of 10.54 . Calculate what amount of $\mathrm{HCl}(\mathrm{g})$

- Consider the following reaction sequences beginning with the alcohol \mathbf{G}.

What is the systematic name for \mathbf{G} ?

Suggest structures for compounds $\mathbf{A}-\mathbf{F}$ in the reaction sequences above.

A	B	C
D	E	F

What type of reaction is occurring at each of the following steps?
Step (iii)
Step (iv)
Step (v)
Step (vi)

- Shown on page 19 are the mass (MS), infrared (IR), ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for a

Marks 8 compound of empirical formula $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}$. Use this information to deduce a structure for this compound. (NMR chemical shift ranges can be found on page 24.) Show your working below.
Working

- Apply your understanding of 'curly arrows' to draw in the arrows required to complete a mechanism for the following reaction.

- The systematic name of threonine is 2-amino-3-hydroxybutanoic acid. Assign the
absolute configuration of L-threonine. Show your working.

L-threonine

- Protons next to a carbonyl group can be removed by alkoxide bases as shown below.

Apply your understanding of resonance to propose a structure \mathbf{L} that explains how the carbonyl group increases the acidity of these hydrogens.

Add curly arrows to the reaction scheme above to complete a mechanism for the deprotonation of \mathbf{J} to give \mathbf{K}, and the stabilisation of \mathbf{K} by resonance.
The $\mathrm{p} K_{\mathrm{a}}$ values of compounds \mathbf{J}, \mathbf{M} and \mathbf{N} are 9,13 and 19 , but not in that order. Match each compound with the correct $\mathrm{p} K_{\mathrm{a}}$, and explain your answer.

J

M

N
N
\square

Reasoning for above assignments

- In the electrophilic aromatic substitution $\left(\mathrm{S}_{\mathrm{E}} \mathrm{Ar}\right)$ of pyrrole, the 2-substituted derivative is the major product.

Draw the cationic (Wheland-type) intermediate formed during reaction at the 2-position, and the equivalent intermediate formed during reaction at the 3-position. Using these structures, explain why reaction at the 2-position is faster, and leads to the major product.
${ }^{1}$ H NMR Chemical Shifts

a $\mathrm{R}-\mathrm{H}$
b $\mathrm{Ph}-\mathrm{C}-\mathrm{H}$

c $\mathrm{C}=\mathrm{C}-\mathrm{H}$
d $\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \quad \mathrm{j} \quad \mathrm{O}-\mathrm{C}-\mathrm{H}$
e $\mathrm{Ph}-\mathrm{H}$
f $\mathrm{X}-\mathrm{C}-\mathrm{H}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I$)$
g $\mathrm{F}-\mathrm{C}-\mathrm{H}$

${ }^{13} \mathrm{C}$ NMR Chemical Shifts

a alkanes
f C-I
b alkynes
g C-Cl
c alkenes
h C-F
d aromatics
i C-O
e C-Br
j $\mathrm{C} \equiv \mathrm{N}$
k acids, esters, amides
1 aldehydes, ketones

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$0^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
1 tonne $=10^{3} \mathrm{~kg}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples
Multiple Prefix Symbol
10^{3} kilo k
10^{6} mega M
$10^{9} \quad$ giga $\quad G$

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E ${ }^{\circ}$

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$	+1.51
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{g})+7 \mathrm{H}_{2} \mathrm{O}$	+1.36
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}(\mathrm{s})$	+1.18
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{NO}_{3}{ }^{(a q)}+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	$+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)
 Useful formulas

Quantum Chemistry $\begin{aligned} & E=h v=h c / \lambda \\ & \lambda=h / m v \\ & E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right) \\ & \Delta x \cdot \Delta(m v) \geq h / 4 \pi \\ & q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4} \\ & T \lambda=2.898 \times 10^{6} \mathrm{~K} \mathrm{~nm} \end{aligned}$	Electrochemistry $\Delta G^{\circ}=-n F E^{\circ}$ Moles of $e^{-}=I t / F$ $\begin{aligned} E & =E^{\circ}-(R T / n F) \times 2.303 \log Q \\ & =E^{\circ}-(R T / n F) \times \ln Q \\ E^{\circ} & =(R T / n F) \times 2.303 \log K \\ & =(R T / n F) \times \ln K \\ E & =E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right) \end{aligned}$
Acids and Bases $\begin{aligned} & \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\} \end{aligned}$	Gas Laws $\begin{aligned} & P V=n R T \\ & \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T \\ & E_{\mathrm{k}}=1 / 2 m V^{2} \end{aligned}$
Radioactivity $\begin{aligned} & \mathrm{t}_{1 / 2}=\ln 2 / \lambda \\ & A=\lambda N \\ & \ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t \\ & { }^{14} \mathrm{C} \text { age }=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right) \text { years } \end{aligned}$	Kinetics $\begin{aligned} & t_{1 / 2}=\ln 2 / k \\ & k=A \mathrm{e}^{-E a / R T} \\ & \ln [\mathrm{~A}]=\ln [\mathrm{A}]_{0}-k t \\ & \ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \end{aligned}$
Colligative Properties \& Solutions $\begin{aligned} & \Pi=\mathrm{c} R T \\ & P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ} \\ & \mathrm{c}=k \mathrm{p} \\ & \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \\ & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m \end{aligned}$	Thermodynamics \& Equilibrium $\begin{aligned} & \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\ & \Delta G=\Delta G^{\circ}+R T \ln Q \\ & \Delta G^{\circ}=-R T \ln K \\ & \Delta_{\text {univ }} V^{\circ}=R \ln K \\ & \ln \frac{K_{2}}{K_{1}}=\frac{-\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \end{aligned}$
Miscellaneous $\begin{aligned} & A=-\log \frac{I}{I_{0}} \\ & A=\varepsilon c l \\ & E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}} \end{aligned}$	Mathematics If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ $\ln x=2.303 \log x$ Area of circle $=\pi r^{2}$ Surface area of sphere $=4 \pi r^{2}$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \substack{\text { uroecer } \\ \mathbf{H} \\ \mathbf{H} \\ 1.008 \\ \hline} \end{gathered}$																	$\begin{gathered} \hline 2 \\ \text { wuwn } \\ \text { He } \\ 4.003 \end{gathered}$
$\begin{gathered} 3 \\ \text { unuwn } \\ \text { Li } \\ 6.941 \end{gathered}$	$\begin{gathered} \hline 4 \\ \hline \text { веxyun } \\ \text { Be } \\ 9.012 \\ \hline \end{gathered}$											$\begin{gathered} \hline \begin{array}{c} 5 \\ \text { nower } \\ \mathbf{B} \\ 10.81 \end{array} \end{gathered}$	$\begin{gathered} \hline \text { chaven } \\ \text { can } \\ \text { 12.01 } \end{gathered}$		$\begin{gathered} \hline 8 \\ \begin{array}{c} 8 \text { oxcen } \\ \mathbf{O} \\ 16.00 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ~ \end{gathered}$	$\begin{gathered} 9 \\ \hline \text { nuones } \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { Mrow } \\ \text { Ne } \\ 20.18 \\ \hline \end{gathered}$
$\begin{gathered} 11 \\ \text { sonum } \\ \text { Na } \\ 22.99 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \text { macessum } \\ \mathbf{M g} \\ 24.31 \\ \hline \end{gathered}$												$\begin{gathered} 14 \\ \text { sucuon } \\ \text { Si } \\ 28.09 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ \text { cuaspousus } \\ \mathbf{P} \\ 30.97 \\ \hline \end{gathered}$		$\begin{gathered} 17 \\ \begin{array}{c} 17 \text { cunese } \\ \text { Cl } \\ 35.45 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ \hline \text { areor } \\ \text { Ar } \\ \text { A9.95 } \end{gathered}$
$\begin{gathered} 19 \\ \substack{\text { pornsusum } \\ \mathbf{K} \\ 39.10 \\ \hline} \end{gathered}$	$\begin{gathered} 20 \\ \text { cuncum } \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \begin{array}{c} \text { scavoun } \\ \text { Sc } \\ 44.96 \end{array} \end{gathered}$	$\begin{gathered} \hline 22 \\ \hline \text { manem } \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { vanumu } \\ \text { V } \\ 50.94} \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \substack{\text { cheownum } \\ \mathbf{C r} \\ 52.00 \\ 5 \\ \hline} \end{gathered}$	$\begin{array}{\|c} \hline \text { 25 } \\ \text { mananse } \\ \text { Mnn } \\ \text { M4.94 } \end{array}$	$\begin{gathered} \hline \text { 2ex } \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { cosur } \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { necer } \\ \text { Ni } \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { copere } \\ \text { cour } \\ 63.55 \end{array} \\ \end{gathered}$	$\begin{gathered} 30 \\ \text { anc } \\ \text { Zn } \\ 65.39 \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ \begin{array}{c} \text { culum } \\ \text { Ga } \\ 69.72 \end{array} \end{gathered}$	$\begin{array}{\|c} \hline \text { ceanen } \\ \text { crence } \\ \text { Gee } \\ 72.59 \\ \hline \end{array}$	$\begin{gathered} 33 \\ \hline \text { Mesenc } \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \text { sunven } \\ \text { ssen } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \text { manene } \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{aligned} & 36 \\ & \text { Kevrow } \\ & \text { Kr } \\ & \text { K3.80 } \end{aligned}$
	$\begin{gathered} \hline 38 \\ \substack{\text { snomunum } \\ \text { Sr } \\ 87.62 \\ 87.62 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 39 \\ \substack{\text { ruruw } \\ \mathbf{Y} \\ 88.91 \\ \hline \\ \hline \\ \hline} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 40 \\ \text { znconven } \\ \mathbf{Z r} \\ 91.22 \\ \hline \end{array}$	$\begin{gathered} \hline 41 \\ \text { M10oun } \\ \text { Nb } \\ 92.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 42 \\ \text { Mol rumenum } \\ \text { Mo } \\ 95.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 43 \\ \text { тсанитим } \\ \text { TC } \\ {[98.91]} \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { gunumun } \\ \mathbf{R u} \\ 101.07 \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 46 \\ \text { punurum } \\ \text { Pd } \\ 106.4 \\ \hline \end{array}$	$\begin{gathered} \hline 47 \\ \text { sunver } \\ \text { Ag } \\ 107.87 \\ \hline \end{gathered}$	48 cancum Cd 112.40 80	$\begin{gathered} \hline 49 \\ \text { novn } \\ \text { In } \\ 114.82 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 50 \\ \text { Tw } \\ \text { Sn } \\ 118.69 \\ \hline \end{array}$	$\begin{gathered} \hline 51 \\ \text { Nrivowr } \\ \text { Sb } \\ 121.75 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 52 } \\ \text { munum } \\ \text { Te } \\ \text { 127.60 } \\ \hline \end{array}$	$\begin{gathered} 53 \\ \text { romene } \\ \text { I } \\ 126.90 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 54 \\ \text { xexow } \\ \mathbf{X e} \\ 131.30 \\ \hline \end{array}$
55 cussum cs Cs 132.91 87	$\begin{gathered} \hline 56 \\ \text { מnaven } \\ \text { Ba } \\ \text { Ba } \\ 137.34 \\ \hline \end{gathered}$	57－71	$\begin{array}{\|c} \hline 72 \\ \text { manwum } \\ \text { Hf } \\ 178.49 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 73 \\ \text { runtuon } \\ \text { Ta } \\ 180.95 \\ \hline \end{array}$	$\begin{gathered} 74 \\ \text { rucstre } \\ \mathbf{W} \\ \text { W83.85 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Renem } \\ \mathbf{R e} \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { osmun } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c} \hline 77 \\ \text { manum } \\ \text { Ir } \\ 192.22 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 78 \\ \text { purnuw } \\ \mathbf{P t} \\ 195.09 \\ \hline \end{array}$	79 colu Au 196.97	80 mectur $\mathbf{H g}$ 200.59 12	$\begin{gathered} \hline 81 \\ \text { manum } \\ \text { Tl } \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { cewo } \\ \mathbf{P b} \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { wswru } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{gathered}$	84 polonum Po $[210.0]$	$\begin{gathered} 85 \\ \text { ssume } \\ \text { At } \\ \text { [210.0] } \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \text { Renow } \\ \mathbf{R n} \\ \text { [222.0] } \\ \hline \end{gathered}$
87 $\substack{\text { reancum } \\ \text { Fr } \\ [223.0]}$	88 newoum Ra $[226.0]$	89－103	104 uruneranonu Rf $[261]$	105 Duswm Db ［262］	$\begin{gathered} 106 \\ \text { sexanereum } \\ \text { Sg } \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { sompun } \\ \text { Bh } \\ {[262]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 108 \\ & \text { massum } \\ & \text { Hs } \\ & {[265]} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 109 \\ \text { мenmeurn } \\ \text { MIt } \\ {[266]} \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline 110 \\ \text { penesranumen } \\ \text { Ds } \\ {[271]} \end{array} \right\rvert\,$	$\begin{gathered} 111 \\ \text { roencranem } \\ \mathbf{R g} \\ {[272]} \\ \hline \end{gathered}$	$\substack{112 \\ \text { conencrum } \\ \mathbf{C n} \\ [283]}$						

$\underset{\mathrm{S}}{\text { LANTHANOID }}$	$\begin{gathered} \hline 57 \\ \text { Lалтнамм } \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \begin{array}{c} \text { cerrum } \\ \text { Ce } \\ 140.12 \end{array} \end{gathered}$	59 peaseopmuм $\mathbf{P r}$ 140.91	$\begin{gathered} \hline \begin{array}{c} 60 \\ \text { N巨оомитм } \\ \text { Nd } \\ 144.24 \end{array} \end{gathered}$	61 Pm ［144．9］	$\begin{gathered} \hline 62 \\ \text { samarum } \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{gathered} \begin{array}{c} 63 \\ \text { еuropum } \\ \text { Eu } \\ 151.96 \end{array} \end{gathered}$		$\begin{gathered} \hline 65 \\ \text { тегним } \\ \mathbf{T b} \\ 158.93 \end{gathered}$	66 oxspeosum $\mathbf{D y}$ 162.50	$\begin{gathered} 67 \\ \text { номмим } \\ \mathbf{H o} \\ 164.93 \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { عевापм } \\ \text { Er } \\ 167.26 \end{gathered}$	$\begin{gathered} \mathbf{6 9} \\ \text { тницим } \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} \hline 70 \\ \begin{array}{c} \text { уттвним } \\ \mathbf{Y b} \\ 173.04 \end{array} \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { Lитвтм } \\ \mathbf{L u} \\ 174.97 \end{gathered}$
ACTINOIDS	$\begin{gathered} 89 \\ \text { Астмим } \\ \text { Ac } \\ {[227.0]} \end{gathered}$	$\begin{gathered} 90 \\ \text { 9ниемм } \\ \text { Th } \\ 232.04 \end{gathered}$	91 $\left.\begin{array}{c}\text { protacrinum } \\ \mathbf{P a} \\ {[231.0]}\end{array}\right]$	$\begin{gathered} 92 \\ \begin{array}{c} \text { URANINM } \\ \mathbf{U} \\ 238.03 \end{array} \end{gathered}$	$\begin{gathered} 93 \\ \begin{array}{c} 9 \text { мертимим } \\ \mathbf{N p} \\ {[237.0]} \end{array} \end{gathered}$	$\begin{gathered} 94 \\ \begin{array}{c} 940 \text { punum } \\ \mathbf{P u} \\ {[239.1]} \end{array} \end{gathered}$	$\begin{gathered} 95 \\ \begin{array}{c} \text { Амевгсим } \\ \text { Am } \\ {[243.1]} \end{array} \end{gathered}$	$\begin{gathered} 96 \\ \begin{array}{c} 96 \text { curum } \\ \text { Cm } \\ {[247.1]} \end{array} \end{gathered}$	$\begin{aligned} & 97 \\ & \text { ввккниш } \\ & \text { Bk } \\ & {[247.1]} \end{aligned}$	$\begin{gathered} 98 \\ \substack{\text { calfornuм } \\ \mathbf{C f f} \\ [252.1]} \end{gathered}$	$\begin{gathered} \hline 99 \\ \text { епмтtenum } \\ \text { Es } \\ {[252.1]} \end{gathered}$	$\begin{gathered} \hline 100 \\ \text { кевпим } \\ \mathbf{F m} \\ {[257.1]} \end{gathered}$	$\underset{\substack{101 \\ \text { мепрпеним } \\ \mathbf{M d} \\[256.1]}}{ }$	$\begin{gathered} 102 \\ \begin{array}{c} \text { мовним } \\ \text { No } \\ {[259.1]} \end{array} \end{gathered}$	$\begin{gathered} 103 \\ \text { LawRencum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

